Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden.

Identifieur interne : 000787 ( Main/Exploration ); précédent : 000786; suivant : 000788

Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden.

Auteurs : Yang Liu [Canada] ; Yousry A. El-Kassaby [Canada]

Source :

RBID : pubmed:31878866

Descripteurs français

English descriptors

Abstract

BACKGROUND

Natural selection on fitness-related traits can be temporally heterogeneous among populations. As climate changes, understanding population-level responses is of scientific and practical importance. We examined 18 phenotypic traits associated with phenology, biomass, and ecophysiology in 403 individuals of natural Populus trichocarpa populations, growing in a common garden.

RESULTS

Compared with tree origin settings, propagules likely underwent drought exposures in the common garden due to significantly low rainfall during the years of measurement. All study traits showed population differentiation reflecting adaptive responses due to local genetic adaptation. Phenology and biomass traits were strongly under selection and showed plastic responses between years, co-varying with latitude. While phenological events (e.g., bud set and growth period) and biomass were under positive directional selection, post-bud set period, particularly from final bud set to the onset of leaf drop, was selected against. With one exception to water-use efficiency, ecophysiology traits were under negative directional selection. Moreover, extended phenological events jointly evolved with source niches under increased temperature and decreased rainfall exposures. High biomass coevolved with climatic niches of high temperature; low rainfall promoted high photosynthetic rates evolution.

CONCLUSIONS

This work underpins that P. trichocarpa is likely to experience increased fitness (height gain) by evolving toward extended bud set and growth period, abbreviated post-bud set period, and increased drought resistance, potentially constituting a powerful mechanism for long-lived tree species in surviving unpredictably environmental extremes (e.g., drought).


DOI: 10.1186/s12862-019-1553-6
PubMed: 31878866
PubMed Central: PMC6933736


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden.</title>
<author>
<name sortKey="Liu, Yang" sort="Liu, Yang" uniqKey="Liu Y" first="Yang" last="Liu">Yang Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada. y.liu@alumni.ubc.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="El Kassaby, Yousry A" sort="El Kassaby, Yousry A" uniqKey="El Kassaby Y" first="Yousry A" last="El-Kassaby">Yousry A. El-Kassaby</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31878866</idno>
<idno type="pmid">31878866</idno>
<idno type="doi">10.1186/s12862-019-1553-6</idno>
<idno type="pmc">PMC6933736</idno>
<idno type="wicri:Area/Main/Corpus">000543</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000543</idno>
<idno type="wicri:Area/Main/Curation">000543</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000543</idno>
<idno type="wicri:Area/Main/Exploration">000543</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden.</title>
<author>
<name sortKey="Liu, Yang" sort="Liu, Yang" uniqKey="Liu Y" first="Yang" last="Liu">Yang Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada. y.liu@alumni.ubc.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="El Kassaby, Yousry A" sort="El Kassaby, Yousry A" uniqKey="El Kassaby Y" first="Yousry A" last="El-Kassaby">Yousry A. El-Kassaby</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC evolutionary biology</title>
<idno type="eISSN">1471-2148</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acclimatization (MeSH)</term>
<term>Adaptation, Physiological (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Climate Change (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gardens (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Selection, Genetic (MeSH)</term>
<term>Trees (genetics)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acclimatation (MeSH)</term>
<term>Adaptation physiologique (MeSH)</term>
<term>Arbres (génétique)</term>
<term>Arbres (physiologie)</term>
<term>Biomasse (MeSH)</term>
<term>Changement climatique (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Jardins (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Sélection génétique (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acclimatization</term>
<term>Adaptation, Physiological</term>
<term>Biomass</term>
<term>Climate Change</term>
<term>Evolution, Molecular</term>
<term>Gardens</term>
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Selection, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acclimatation</term>
<term>Adaptation physiologique</term>
<term>Biomasse</term>
<term>Changement climatique</term>
<term>Feuilles de plante</term>
<term>Jardins</term>
<term>Photosynthèse</term>
<term>Sélection génétique</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Natural selection on fitness-related traits can be temporally heterogeneous among populations. As climate changes, understanding population-level responses is of scientific and practical importance. We examined 18 phenotypic traits associated with phenology, biomass, and ecophysiology in 403 individuals of natural Populus trichocarpa populations, growing in a common garden.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Compared with tree origin settings, propagules likely underwent drought exposures in the common garden due to significantly low rainfall during the years of measurement. All study traits showed population differentiation reflecting adaptive responses due to local genetic adaptation. Phenology and biomass traits were strongly under selection and showed plastic responses between years, co-varying with latitude. While phenological events (e.g., bud set and growth period) and biomass were under positive directional selection, post-bud set period, particularly from final bud set to the onset of leaf drop, was selected against. With one exception to water-use efficiency, ecophysiology traits were under negative directional selection. Moreover, extended phenological events jointly evolved with source niches under increased temperature and decreased rainfall exposures. High biomass coevolved with climatic niches of high temperature; low rainfall promoted high photosynthetic rates evolution.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This work underpins that P. trichocarpa is likely to experience increased fitness (height gain) by evolving toward extended bud set and growth period, abbreviated post-bud set period, and increased drought resistance, potentially constituting a powerful mechanism for long-lived tree species in surviving unpredictably environmental extremes (e.g., drought).</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31878866</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2148</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>BMC evolutionary biology</Title>
<ISOAbbreviation>BMC Evol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden.</ArticleTitle>
<Pagination>
<MedlinePgn>231</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12862-019-1553-6</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Natural selection on fitness-related traits can be temporally heterogeneous among populations. As climate changes, understanding population-level responses is of scientific and practical importance. We examined 18 phenotypic traits associated with phenology, biomass, and ecophysiology in 403 individuals of natural Populus trichocarpa populations, growing in a common garden.</AbstractText>
<AbstractText Label="RESULTS">Compared with tree origin settings, propagules likely underwent drought exposures in the common garden due to significantly low rainfall during the years of measurement. All study traits showed population differentiation reflecting adaptive responses due to local genetic adaptation. Phenology and biomass traits were strongly under selection and showed plastic responses between years, co-varying with latitude. While phenological events (e.g., bud set and growth period) and biomass were under positive directional selection, post-bud set period, particularly from final bud set to the onset of leaf drop, was selected against. With one exception to water-use efficiency, ecophysiology traits were under negative directional selection. Moreover, extended phenological events jointly evolved with source niches under increased temperature and decreased rainfall exposures. High biomass coevolved with climatic niches of high temperature; low rainfall promoted high photosynthetic rates evolution.</AbstractText>
<AbstractText Label="CONCLUSIONS">This work underpins that P. trichocarpa is likely to experience increased fitness (height gain) by evolving toward extended bud set and growth period, abbreviated post-bud set period, and increased drought resistance, potentially constituting a powerful mechanism for long-lived tree species in surviving unpredictably environmental extremes (e.g., drought).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0002-3479-9223</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada. y.liu@alumni.ubc.ca.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>El-Kassaby</LastName>
<ForeName>Yousry A</ForeName>
<Initials>YA</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Evol Biol</MedlineTA>
<NlmUniqueID>100966975</NlmUniqueID>
<ISSNLinking>1471-2148</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000064" MajorTopicYN="N">Acclimatization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="Y">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072506" MajorTopicYN="N">Gardens</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012641" MajorTopicYN="N">Selection, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Climate change</Keyword>
<Keyword MajorTopicYN="Y">Common-garden approach</Keyword>
<Keyword MajorTopicYN="Y">Local adaptation</Keyword>
<Keyword MajorTopicYN="Y">Natural selection</Keyword>
<Keyword MajorTopicYN="Y">Ordinary least-squares</Keyword>
<Keyword MajorTopicYN="Y">Phenotypic plasticity</Keyword>
<Keyword MajorTopicYN="Y">Populus trichocarpa</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31878866</ArticleId>
<ArticleId IdType="doi">10.1186/s12862-019-1553-6</ArticleId>
<ArticleId IdType="pii">10.1186/s12862-019-1553-6</ArticleId>
<ArticleId IdType="pmc">PMC6933736</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2006;170(4):644-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16684227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Mar;14(3):179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23381120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Sep 17;525(7569):372-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26331546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):E249-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26712020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(1):282-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20880224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 May 2;344(6183):1247579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24786084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1035-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Nov;200(3):710-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23889164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2008 Oct;62(10):2451-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18973631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1989 Sep;43(6):1209-1222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Apr;190(1):249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21210818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Aug;207(3):858-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25757098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1263-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24491114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Jun;19(6):1645-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23505261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20008388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2010 May;64(5):1377-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19958384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2016 Jan;107(1):25-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26297912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2014 Sep;63(5):697-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24852061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2004 Jul;58(7):1434-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Sep;20(9):481-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2013 Jul;172(3):653-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23212534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Feb 6;506(7486):89-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24362564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Oct;220(1):300-316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29963703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2014 Nov;68(11):3260-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25065449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2009 May;173(5):579-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19272016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1983 Nov;37(6):1210-1226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28556011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2017 Aug;23(8):3321-3334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28185374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 Nov;12(11):1261-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19740111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2015 Aug 24;9(1):271-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27087852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Mar 28;416(6879):389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jan 2;421(6918):57-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12511952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 Apr;15(4):365-377</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22257223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Dec;23(23):5771-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25319679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2003 Jul 22;270(1523):1433-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12965006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1995 Jun;10(6):248-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2012 Feb;66(2):435-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22276539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2017 Oct;71(10):2313-2326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28804878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1994 Jul-Sep;14(7_9):797-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14967649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1278-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Dec;5(12):537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11120476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2016 Mar;31(3):237-249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26846962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2008 Sep;62(9):2435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1992 Apr;46(2):390-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2005 Jan;92(1):37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1991 Sep;45(6):1317-1331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Dec;200(4):950-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23902460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1985 May;39(3):505-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28561964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Mar;23(5):1053-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24438087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 May 29;8(1):8228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29844365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2005 Aug;59(8):1671-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16329239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Nov 11;55(11):2203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11794781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Oct;135(2):367-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8244001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1821-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 May;222(3):1235-1241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30632169</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Liu, Yang" sort="Liu, Yang" uniqKey="Liu Y" first="Yang" last="Liu">Yang Liu</name>
</region>
<name sortKey="El Kassaby, Yousry A" sort="El Kassaby, Yousry A" uniqKey="El Kassaby Y" first="Yousry A" last="El-Kassaby">Yousry A. El-Kassaby</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000787 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000787 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31878866
   |texte=   Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31878866" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020